

Clinica e Terapia delle Sindromi Mielodisplastiche

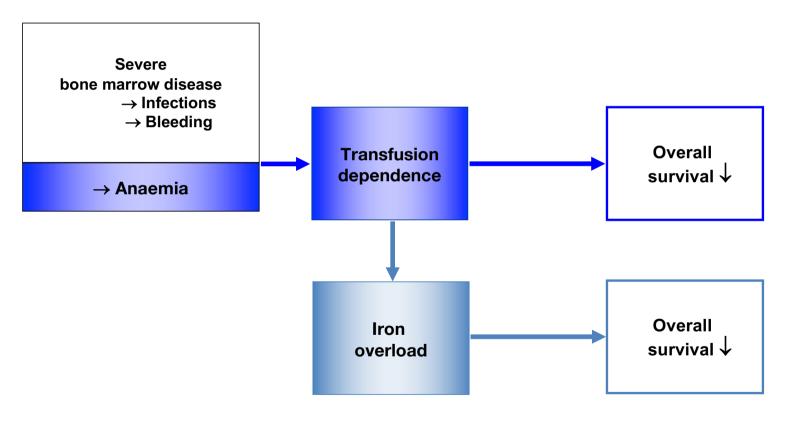
28 maggio 2022

Il trattamento del paziente con sovraccarico marziale CLINICA

Federica Pilo

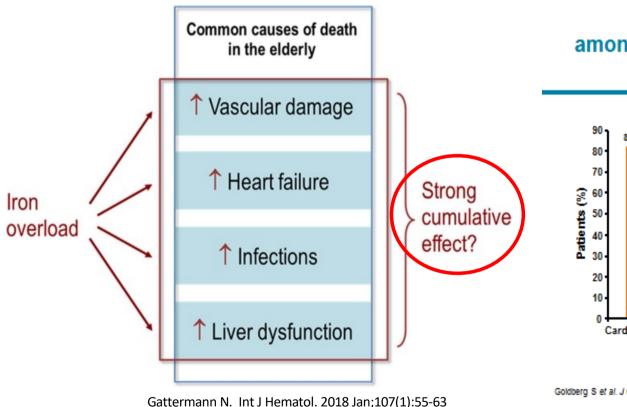
U.O Ematologia e CTMO Cagliari

DISCLOSURE


Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
NOVARTIS					х	х	
CELGENE/BMS						x	

AGENDA

What we know and what we don't know about iron chelation


Highlights of new clinical models involved uncommon iron biomarkers

Independent impact of iron overload and transfusion dependency on survival in patients with MDS



Gattermann N, Rachmilewitz EA. Ann Hematol. 2011;90:1-10.

Iron-related complications overlap with age-related clinical problems

Prevalance of co-morbid conditions among transfused and non-transfused patients with MDS

Goldberg S et al. J Clin Oncol 2010;28:2847-2852

> Acta Haematol. 2021;144(3):332-336. doi: 10.1159/000510111. Epub 2020 Oct 2.

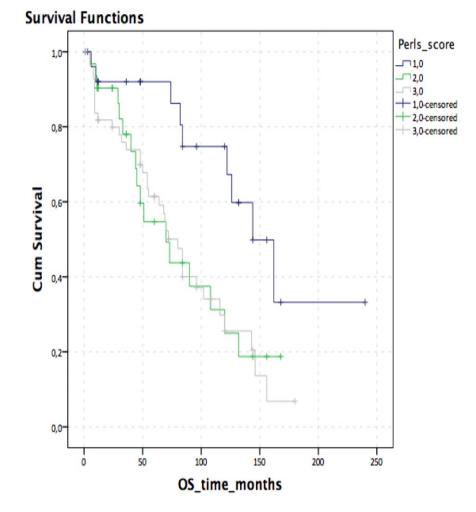
Perls Stain Grade in Bone Marrow Aspirate Correlates with Overall Survival in Low-Risk Myelodysplastic Patients

Federica Pilo ¹, Giovanni Caocci ², Giannalisa Mele ¹, Giorgio La Nasa ¹

3700 Increased Bone Marrow Iron at Diagnosis Is Associated with Inferior Prognosis in Patients with Myelodysplastic Syndromes

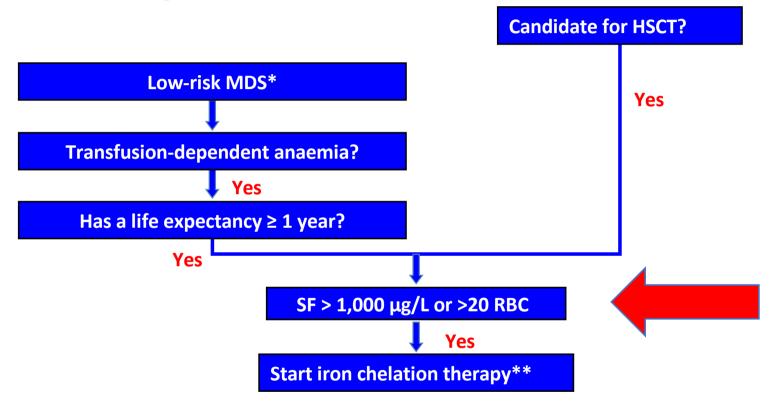
Program: Oral and Poster Abstracts

Session: 637. Myelodysplastic Syndromes - Clinical and Epidemiological: Poster III


Hematology Disease Topics & Pathways:

Epidemiology, Clinical Research, Clinically Relevant, Diseases, Registries, Myeloid Malignancies, Clinical Practice (e.g.

Guidelines, Health Outcomes and Services, and Survivorship, Value; etc.)


Monday, December 13, 2021, 6:00 PM-8:00 PM

Annika Kasprzak, MD^{1*} , **Sandra Becker**^{2*}, Martina Rudelius, MD^{3*} , Corinna Strupp, MD^{1*} , Kathrin Nachtkamp, MD^{1*} , Judith Strapatsas, MD^{1*} , Barbara Hildebrandt^{4*}, Norbert Gattermann, MD^{1} and Ulrich Germing, MD^{1*}

<u>Conclusion</u>: Increased tissue iron in the bone marrow at the time of diagnosis is associated with inferior survival in patients with MDS, primarily in patients with higher risk MDS. At diagnosis, patients are not yet transfusion-dependent. This suggests that increased iron reflects a prolonged period of increased duodenal iron uptake as a consequence of ineffective erythropoiesis. Therefore, increased marrow iron at the time of MDS diagnosis seems to be a surrogate parameter of hematopoietic insufficiency, which is the real cause of inferior prognosis.

Iron chelation algorithm for MDS

^{*}Includes IPSS Low and Int-1.

Bennett JM, et al. Am J Hematol. 2008;83:858-61. Gattermann N. Int J Hematol. 2008;88:24-9.

^{**}Duration: as needed to maintain serum ferritin < 1,000 μg/L.

Indication to start chelation

» Bulky iron accumulation (serum ferritin / number of transfusions)

» Life expectancy

Concept: development of organ damage require:

- overload (bulky disease)
 - time (years)

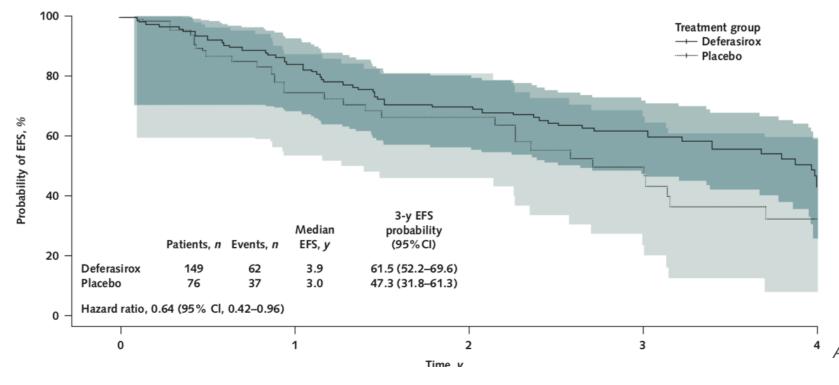
Iron chelation therapy in patients with low- to intermediate-risk myelodysplastic syndrome: A systematic review and meta-analysis

			ICT	No ICT		Hazard Ratio	Hazard Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% C	1
Delforge 2014	-1.5141	0.3093	80	47	11.1%	0.22 [0.12, 0.40]	-	
Hoeks 2020	-0.6931	0.1968	199	490	15.9%	0.50 [0.34, 0.74]	-	
Komrokji 2011	-0.6539	0.2639	45	52	12.8%	0.52 [0.31, 0.87]		
Leitch 2012	-1.0788	0.4527	38	144	7.0%	0.34 [0.14, 0.83]		
Leitch 2017	-0.6931	0.3144	83	156	10.9%	0.50 [0.27, 0.93]		
Remacha 2014	-1.0189	0.4184	146	117	7.8%	0.36 [0.16, 0.82]		
Rose 2010	-1.1973	0.3241	53	44	10.5%	0.30 [0.16, 0.57]		
Singhal 2017	-0.3567	0.1324	48	559	18.9%	0.70 [0.54, 0.91]	•	
Wong 2018	-1.204	0.5605	63	119	5.1%	0.30 [0.10, 0.90]		
Total (95% CI)			755	1728	100-0%	0.43 [0.32, 0.57]	•	
Heterogeneity: $Tau^2 = 0.09$; $Chi^2 = 18.10$, $df = 8$ (P = 0.02); $I^2 = 56\%$					⊢	 		
Test for overall effect:	Z = 5.87 (P < 0.00)	001)				0.01	0.1 1	10 100
							Favours ICT Favours	no ICT

Br J Haematol, Volume: 197, Issue: 1, Pages: e9-e11, First published: 19 December 2021, DOI: (10.1111/bjh.17998)

Studies demonstrating a survival benefit of chelation therapy

Study	N	Design	Survival	Non-chelated patients	Chelated patients	P value
Leitch 2008	36	Retrospective	Median overall OS	40 mo	Not reached	0.003
			4-year survival rate	43%	64%	0.003
Rose 2010	97	Prospective follow-up	Median OS from diagnosis	53 mo	124 mo	<0.0003
			Median OS with adequate vs weak chelation	NA	124 vs 85 mo	<0.001
Neukirchen 2012 ^a	188	Matched pair analysis	Median OS	49 mo	75 mo	0.002
Neukirchen 2012 ^b	417	Retrospective, registry	Median time to death in transfusion-dependent patients	30 mo	67 mo	NR
Komrokji 2011	97	Retrospective	Median OS	34 mo	59 mo	0.013
Delforge 2012	186	Retrospective	Median OS in Low/Int-1	37 mo	126 mo	<0.001
Zeidan 2012	4226	Retrospective, registry	Median survival	47 wk	110 wk	0.003
			HR for 27–52 wks on DFX	1	0.77	NR
			HR for ≥53 wks on DFX	1	0.34	NR
de Witte 2012	1000	Prospective, registry	Adjusted HR	1	0.51 (0.19–1.32)	NS
Delforge 2014	127	Retrospective follow-up	Median OS	3.1 yrs	10.2 yrs	<0.001
Remacha 2015	263	Retrospective	Median OS	Not reached	153 mo	<0.001
Langemeijer 2016	195/573	Registry	Adjusted HR	1.3 (0.95–1.7)	1	0.01
Lyons 2017	599	Prospective, registry	Median OS from diagnosis	47.8 mo	All 86.3 mo ICT >6 mo 98.7 mo	<0.0001
Leitch 2018	239	Prospective, registry	Median OS from transfusion dependence	2.1 yrs	5.2 yrs	<0.0001


Annals of Internal Medicine

Original Research

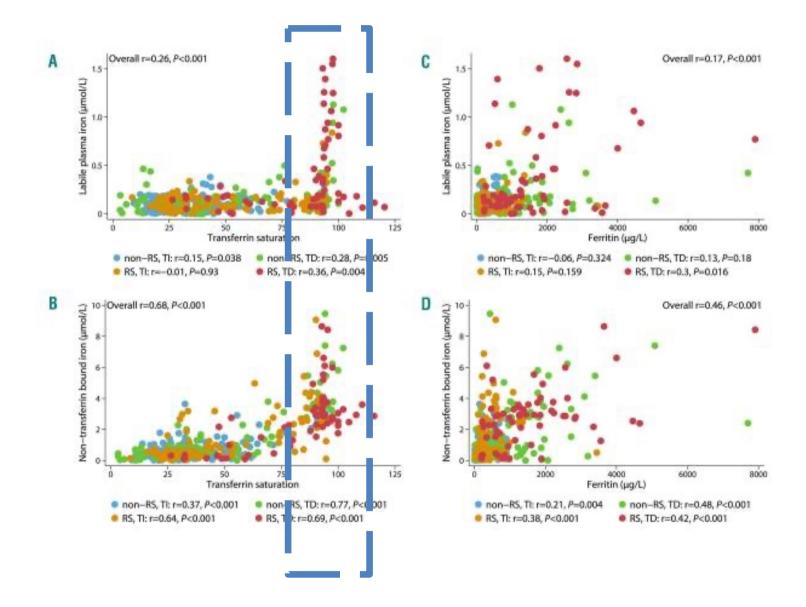
Iron Chelation in Transfusion-Dependent Patients With Low- to Intermediate-1-Risk Myelodysplastic Syndromes

A Randomized Trial

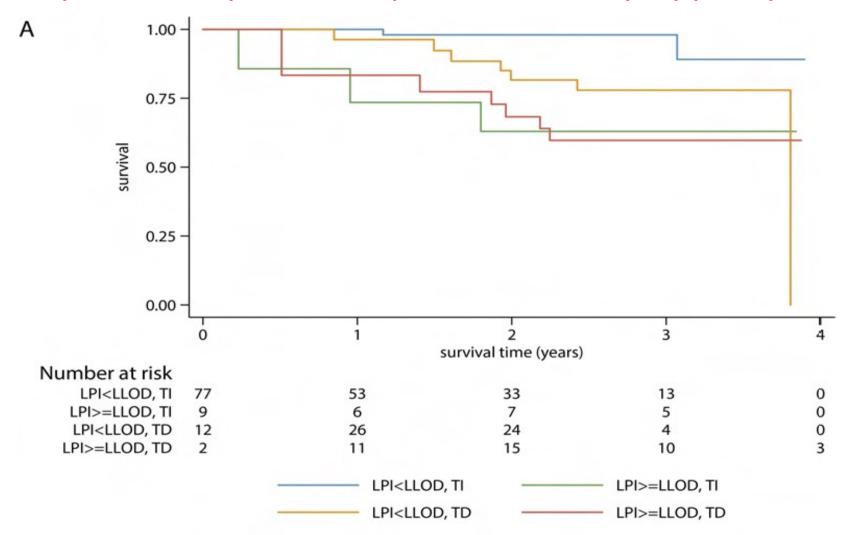
Emanuele Angelucci, MD; Junmin Li, MD; Peter Greenberg, MD; Depei Wu, MD; Ming Hou, MD; Efreen Horacio Montaňo Figueroa, MD; Maria Guadalupe Rodriguez, MD; Xunwei Dong, MD; Jagannath Ghosh, MS; Miguel Izquierdo, MD; and Guillermo Garcia-Manero, MD; on behalf of the TELESTO Study Investigators*

A 36.4% risk reduction in EFS was observed in the deferasirox arm compared with the placebo arm (HR: 0.636; 95% CI: 0.42, 0.96; nominal *P*=0.015)

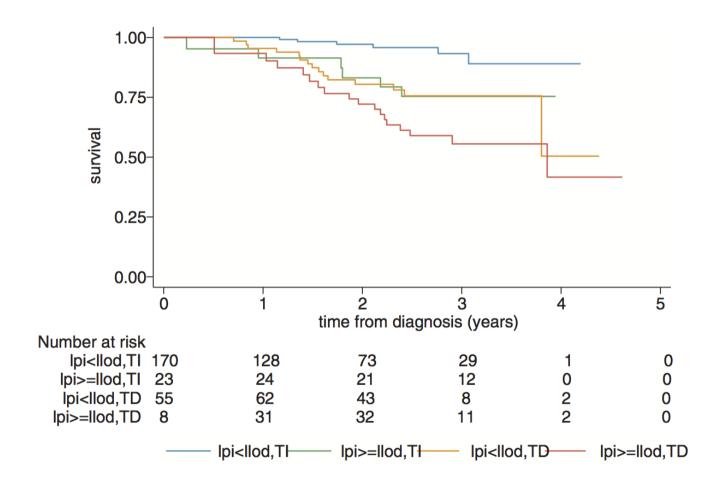
Ann Intern Med. 2020;172:513-522


AGENDA

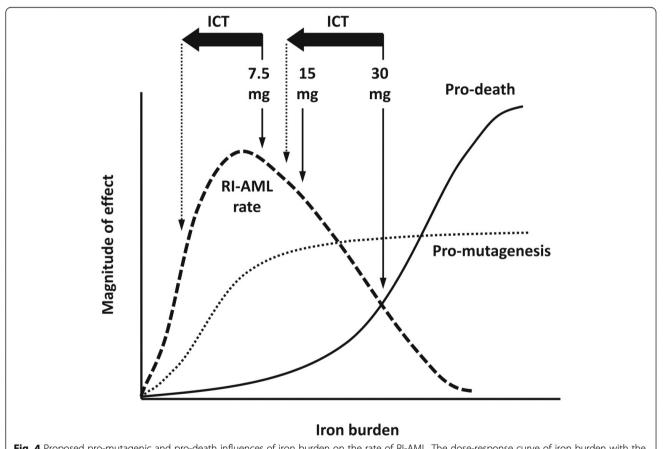
What we know and what we don't know about iron chelation


Highlights of new clinical models involved uncommon iron biomarkers

Iron overload detection: new prospective


PRESENT	FUTURE
 ferritin, transferrin saturation blood transfusion intake, MRI 	 NTBI, LPI/LCI, ROS (peroxides, superoxide, peroxides/superoxide ratio) Reduced glutathione (GSH) Lipid peroxidases (MDA) Hepcidin, GDF 11 e 15 Erythroferrone, 8-OHdG and OGG1 activity

Labile plasma iron levels predict survival in patients with lower-risk Myelodysplastic syndromes



Toxic iron species in lower-risk myelodysplastic syndrome patients: course of disease and effects on outcome

- LPI was positively correlated TSAT LPI values increased exponentially at TSAT values above 80%.
- reference range in the non RS-TI group and above the upper limit of the reference range in all other subgroups with the highest levels in the RS-TD group
- RS-MDS have the highest levels for markers that reflect iron toxicity.
- LPI levels above the LLOD are associated with inferior overall and progression-free survival, irrespective of transfusion status.

The effects of secondary iron overload and iron chelation on a radiation-induced acute myeloid leukemia mouse model

Fig. 4 Proposed pro-mutagenic and pro-death influences of iron burden on the rate of RI-AML. The dose-response curve of iron burden with the pro-mutagenesis (dotted line) and pro-death (solid line) responses of HSCs. The RI-AML rate (dashed line) is the combined effect of the pro-mutagenesis and pro-death responses at a given iron dose

Thanks for your very kind attention

federica.pilo@aob.it